1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
// Copyright (c) 2015-2017 Georg Brandl.  Licensed under the Apache License,
// Version 2.0 <LICENSE-APACHE or http://www.apache.org/licenses/LICENSE-2.0>
// or the MIT license <LICENSE-MIT or http://opensource.org/licenses/MIT>, at
// your option. This file may not be copied, modified, or distributed except
// according to those terms.

//! Python values, and serialization instances for them.

use std::fmt;
use std::cmp::Ordering;
use std::collections::{BTreeMap, BTreeSet};
use num_bigint::BigInt;
use num_traits::{Signed, ToPrimitive};

pub use value_impls::{to_value, from_value};

use error::{Error, ErrorCode};

/// Represents all primitive builtin Python values that can be restored by
/// unpickling.
///
/// Note on integers: the distinction between the two types (short and long) is
/// very fuzzy in Python, and they can be used interchangeably.  In Python 3,
/// all integers are long integers, so all are pickled as such.  While decoding,
/// we simply put all integers that fit into an i64, and use `BigInt` for the
/// rest.
#[derive(Clone, Debug, PartialEq)]
pub enum Value {
    /// None
    None,
    /// Boolean
    Bool(bool),
    /// Short integer
    I64(i64),
    /// Long integer (unbounded length)
    Int(BigInt),
    /// Float
    F64(f64),
    /// Bytestring
    Bytes(Vec<u8>),
    /// Unicode string
    String(String),
    /// List
    List(Vec<Value>),
    /// Tuple
    Tuple(Vec<Value>),
    /// Set
    Set(BTreeSet<HashableValue>),
    /// Frozen (immutable) set
    FrozenSet(BTreeSet<HashableValue>),
    /// Dictionary (map)
    Dict(BTreeMap<HashableValue, Value>),
}

/// Represents all primitive builtin Python values that can be contained
/// in a "hashable" context (i.e., as dictionary keys and set elements).
///
/// In Rust, the type is *not* hashable, since we use B-tree maps and sets
/// instead of the hash variants.  To be able to put all Value instances
/// into these B-trees, we implement a consistent ordering between all
/// the possible types (see below).
#[derive(Clone, Debug)]
pub enum HashableValue {
    /// None
    None,
    /// Boolean
    Bool(bool),
    /// Short integer
    I64(i64),
    /// Long integer
    Int(BigInt),
    /// Float
    F64(f64),
    /// Bytestring
    Bytes(Vec<u8>),
    /// Unicode string
    String(String),
    /// Tuple
    Tuple(Vec<HashableValue>),
    /// Frozen (immutable) set
    FrozenSet(BTreeSet<HashableValue>),
}

fn values_to_hashable(values: Vec<Value>) -> Result<Vec<HashableValue>, Error> {
    values.into_iter().map(Value::into_hashable).collect()
}

fn hashable_to_values(values: Vec<HashableValue>) -> Vec<Value> {
    values.into_iter().map(HashableValue::into_value).collect()
}

impl Value {
    /// Convert the value into a hashable version, if possible.  If not, return
    /// a ValueNotHashable error.
    pub fn into_hashable(self) -> Result<HashableValue, Error> {
        match self {
            Value::None         => Ok(HashableValue::None),
            Value::Bool(b)      => Ok(HashableValue::Bool(b)),
            Value::I64(i)       => Ok(HashableValue::I64(i)),
            Value::Int(i)       => Ok(HashableValue::Int(i)),
            Value::F64(f)       => Ok(HashableValue::F64(f)),
            Value::Bytes(b)     => Ok(HashableValue::Bytes(b)),
            Value::String(s)    => Ok(HashableValue::String(s)),
            Value::FrozenSet(v) => Ok(HashableValue::FrozenSet(v)),
            Value::Tuple(v)     => values_to_hashable(v).map(HashableValue::Tuple),
            _                   => Err(Error::Syntax(ErrorCode::ValueNotHashable))
        }
    }
}

impl HashableValue {
    /// Convert the value into its non-hashable version.  This always works.
    pub fn into_value(self) -> Value {
        match self {
            HashableValue::None         => Value::None,
            HashableValue::Bool(b)      => Value::Bool(b),
            HashableValue::I64(i)       => Value::I64(i),
            HashableValue::Int(i)       => Value::Int(i),
            HashableValue::F64(f)       => Value::F64(f),
            HashableValue::Bytes(b)     => Value::Bytes(b),
            HashableValue::String(s)    => Value::String(s),
            HashableValue::FrozenSet(v) => Value::FrozenSet(v),
            HashableValue::Tuple(v)     => Value::Tuple(hashable_to_values(v)),
        }
    }
}

fn write_elements<'a, I, T>(f: &mut fmt::Formatter, it: I,
                            prefix: &'static str, suffix: &'static str,
                            len: usize, always_comma: bool) -> fmt::Result
    where I: Iterator<Item=&'a T>, T: fmt::Display + 'a
{
    try!(f.write_str(prefix));
    for (i, item) in it.enumerate() {
        if i < len - 1 || always_comma {
            try!(write!(f, "{}, ", item));
        } else {
            try!(write!(f, "{}", item));
        }
    }
    f.write_str(suffix)
}

impl fmt::Display for Value {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            Value::None          => write!(f, "None"),
            Value::Bool(b)       => write!(f, "{}", if b { "True" } else { "False" }),
            Value::I64(i)        => write!(f, "{}", i),
            Value::Int(ref i)    => write!(f, "{}", i),
            Value::F64(v)        => write!(f, "{}", v),
            Value::Bytes(ref b)  => write!(f, "b{:?}", b), //
            Value::String(ref s) => write!(f, "{:?}", s),
            Value::List(ref v)   => write_elements(f, v.iter(), "[", "]", v.len(), false),
            Value::Tuple(ref v)  => write_elements(f, v.iter(), "(", ")", v.len(), v.len() == 1),
            Value::FrozenSet(ref v) => write_elements(f, v.iter(),
                                                      "frozenset([", "])", v.len(), false),
            Value::Set(ref v)    => if v.is_empty() {
                write!(f, "set()")
            } else {
                write_elements(f, v.iter(), "{", "}", v.len(), false)
            },
            Value::Dict(ref v) => {
                try!(write!(f, "{{"));
                for (i, (key, value)) in v.iter().enumerate() {
                    if i < v.len() - 1 {
                        try!(write!(f, "{}: {}, ", key, value));
                    } else {
                        try!(write!(f, "{}: {}", key, value));
                    }
                }
                write!(f, "}}")
            },
        }
    }
}

impl fmt::Display for HashableValue {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            HashableValue::None             => write!(f, "None"),
            HashableValue::Bool(b)          => write!(f, "{}", if b { "True" } else { "False" }),
            HashableValue::I64(i)           => write!(f, "{}", i),
            HashableValue::Int(ref i)       => write!(f, "{}", i),
            HashableValue::F64(v)           => write!(f, "{}", v),
            HashableValue::Bytes(ref b)     => write!(f, "b{:?}", b), //
            HashableValue::String(ref s)    => write!(f, "{:?}", s),
            HashableValue::Tuple(ref v)     => write_elements(f, v.iter(), "(", ")",
                                                              v.len(), v.len() == 1),
            HashableValue::FrozenSet(ref v) => write_elements(f, v.iter(), "frozenset([", "])",
                                                              v.len(), false),
        }
    }
}

impl PartialEq for HashableValue {
    fn eq(&self, other: &HashableValue) -> bool {
        self.cmp(other) == Ordering::Equal
    }
}

impl Eq for HashableValue {}

impl PartialOrd for HashableValue {
    fn partial_cmp(&self, other: &HashableValue) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

/// Implement a (more or less) consistent ordering for `HashableValue`s
/// so that they can be added to dictionaries and sets.
///
/// Also, like in Python, numeric values with the same value (integral or not)
/// must compare equal.
///
/// For other types, we define an ordering between all types A and B so that all
/// objects of type A are always lesser than objects of type B.  This is done
/// similar to Python 2's ordering of different types.
impl Ord for HashableValue {
    fn cmp(&self, other: &HashableValue) -> Ordering {
        use self::HashableValue::*;
        match *self {
            None => match *other {
                None => Ordering::Equal,
                _    => Ordering::Less
            },
            Bool(b) => match *other {
                None         => Ordering::Greater,
                Bool(b2)     => b.cmp(&b2),
                I64(i2)      => (b as i64).cmp(&i2),
                Int(ref bi)  => BigInt::from(b as i64).cmp(bi),
                F64(f)       => float_ord(b as i64 as f64, f),
                _            => Ordering::Less
            },
            I64(i) => match *other {
                None         => Ordering::Greater,
                Bool(b)      => i.cmp(&(b as i64)),
                I64(i2)      => i.cmp(&i2),
                Int(ref bi)  => BigInt::from(i).cmp(bi),
                F64(f)       => float_ord(i as f64, f),
                _            => Ordering::Less
            },
            Int(ref bi) => match *other {
                None         => Ordering::Greater,
                Bool(b)      => bi.cmp(&BigInt::from(b as i64)),
                I64(i)       => bi.cmp(&BigInt::from(i)),
                Int(ref bi2) => bi.cmp(bi2),
                F64(f)       => float_bigint_ord(bi, f),
                _            => Ordering::Less
            },
            F64(f) => match *other {
                None         => Ordering::Greater,
                Bool(b)      => float_ord(f, b as i64 as f64),
                I64(i)       => float_ord(f, i as f64),
                Int(ref bi)  => BigInt::from(f as i64).cmp(bi),
                F64(f2)      => float_ord(f, f2),
                _            => Ordering::Less
            },
            Bytes(ref bs) => match *other {
                String(_) | FrozenSet(_) |
                Tuple(_)       => Ordering::Less,
                Bytes(ref bs2) => bs.cmp(bs2),
                _              => Ordering::Greater
            },
            String(ref s) => match *other {
                FrozenSet(_) |
                Tuple(_)       => Ordering::Less,
                String(ref s2) => s.cmp(s2),
                _              => Ordering::Greater
            },
            FrozenSet(ref s) => match *other {
                Tuple(_)          => Ordering::Less,
                FrozenSet(ref s2) => s.cmp(s2),
                _                 => Ordering::Greater
            },
            Tuple(ref t) => match *other {
                Tuple(ref t2) => t.cmp(t2),
                _             => Ordering::Greater
            },
        }
    }
}

/// A "reasonable" total ordering for floats.
fn float_ord(f: f64, g: f64) -> Ordering {
    match f.partial_cmp(&g) {
        Some(o) => o,
        None    => Ordering::Less
    }
}

/// Ordering between floats and big integers.
fn float_bigint_ord(bi: &BigInt, g: f64) -> Ordering {
    match bi.to_f64() {
        Some(f) => float_ord(f, g),
        None => if bi.is_positive() { Ordering::Greater } else { Ordering::Less }
    }
}